
Bazaar – php example code –
part 14 – handling sold item
in database
Article focus on way how to mark sold item in the bazaar_item
table for further deletion. Successfully sold item is marked
with -1 in cart_number, that is displayed in listing on admin
page of bazaar. Admin can see it and delete them. Separate
article will focus on way how to order items in lists for
better manipulation.

Requirements for item handling
During lifecycle of item we must to manage marking different
states of item. When user publish item for sell, item is
marked by cart_number field in a database table bazaar_item as
0 and published gain default value of 0 (waiting for admin to
make item visible in listening’s).

After admin approval, visible field change its value from 0 to
1. Item now waiting for adding into a cart of buyer. After
selecting and adding item into a cart cart_number is changed
in to a number representing ID of user that make buy (added
item into their own cart).

If usere remove item from cart, cart_number value returns to
0. Another user can add item into a cart and mark them with
own ID number.

If user commit cart for final buy, all successfully sold items
are marked by -1 in cart_number field.

On admin page, sold item marked with -1 are displayed and
after admins decision can be finally removed from a database.
Optional functionality for further implementation is option
for archiving of soled item by site admin. Another way for

https://www.cdesigner.eu/2021/03/20/bazaar-php-example-code-part-14-handling-sold-item-in-database/
https://www.cdesigner.eu/2021/03/20/bazaar-php-example-code-part-14-handling-sold-item-in-database/
https://www.cdesigner.eu/2021/03/20/bazaar-php-example-code-part-14-handling-sold-item-in-database/

automation of removing unused and sold item is creating
automated script associated with button for removing any sold
item from database table before a some date (as example one
month after sold).

Full process of altering of cart_number field is shown on next
picture.

Process of handling cart_number filed during lifetime of item
In further rows you can see how our page codes handle this
changes during whole lifetime of item for sell.

1. sellitem.php – item added for listening
Because default values for fields published and cart_number
set to 0. There is no need for any specific write values into
a database table. As you can see in next sql statement:

$sql = „INSERT INTO bazaar_item (name_of_item, price_eur, subc
ategory_id, users_id, item_add_date, screenshot1, screenshot2,
 screenshot3, item_description)
 VALUES (‚$name_of_item‘, $price_eu
r , ‚$subcategory_id‘ , ‚$users_id‘ , now(), ‚$screenshot1‘, ‚
$screenshot2‘, ‚$screenshot3‘, ‚$item_description‘)“;

2. cart.php – mark item as sold after successful
commit to buy
Cart.php script is responsible for marking cart_number with -1
after successful buy. This is how it is implemented in our
code

 /**
*
 * obtain data buyed items from this buyer with
users_id defined by current SESSION
 */
 //get info about sold items – we must go through a
ll buyed items and send emaily one by one for all diferent sel
ers of item (first approach for all item one)
 $sql = „SELECT * FROM bazaar_item WHERE cart_numbe
r = „.“‚$users_id'“ ;
 if($output = mysqli_query($dbc, $sql)){
 if(mysqli_num_rows($output) > 0){ // if any r
ecord obtained from SELECT query

 while($row = mysqli_fetch_array($output)){
 //next rows outputed in while loop

 $item_id = $row[‚item_id‘];
 $name_of_item = $row[‚name_of_item
‘];
 $price_eur = $row[‚price_eur‘];
 $users_id_of_seller = $row[‚users_
id‘];
 /********************************

 * if item with item_ide was bou
ght, tgen set cart_number to -1 and published to -1 – mean sol
d
 */
 // update cart_number and publish
ed to -1 sold
 $sql_update = „UPDATE bazaar_item
SET cart_number = ‚-1‚, published = ‚-1‚ WHERE item_id = $item
_id LIMIT 1″;
 // execute SQL
 mysqli_query($dbc, $sql_update);

3. buyitem.php – mark added item into a cart by
users ID
When a user add item into a cart, buyitem.php script mark
cart_number field with ID of that user. This script work as
you now in a two ways. After first call from index.php obtaing
get data about item of interest and show info about product of
interest, user can chose if will add item into a cart and post
submit result on themself. Only post handling part (not get
handling part) of code will make operation that is shown in
next rows:

 // conect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PW, D
B_NAME);
 // get user id from selected session
 $users_id = $_SESSION[‚users_id‘];
 //create sql query along selected operation

 $sql = „UPDATE bazaar_item SET cart_number
 =“.“‚$users_id‚“.“ WHERE item_id = $item_id LIMIT 1″;

 // execute SQL
 mysqli_query($dbc, $sql);
 // confirm executed command
 echo ‚<p> The item ‘ . $name_of_it
em . ‚ with id ‘ . $item_id . ‚ was
succesfully added into a cart. </p>‘;

 // close database connection
 mysqli_close($dbc);

4. admin.php – show status of item and give option
for deletion
Admin page show items in a database and allow ordering (it
will be explained in one of the next articles, how we obtained
these functionality).

Next picture show how it looks like without ordering
functionality.

admin.php – sold item marked in published field
Next code snippet show, how are information depicted in
published filed in our table:

 while($row = mysqli_fetch_array($output)){ //next rows output
ed in while loop
 echo “ <div class=\“mailinglist\“> “ ;
 echo „<tr>“;
 echo „<td>“ . $row[‚item_id‘] . „</td>“;
 echo „<td>“ . $row[‚name_of_item‘] . „</td

>“;
 if ($row[‚published‘]==1) { // show if pub
lished – set 1 or waiting set to 0
 echo ‚<td> ok-
Published </spann></td>‘;
 } else if ($row[‚published‘]== 0){ // 1 pu
blished, 0 unpublished, -1 sold ready for deletion
 echo ‚<td> X-
waiting </spann></td>‘;
 } else if ($row[‚published‘]== -1){ // 1 p
ublished, 0 unpublished, -1 sold ready for deletion
 echo ‚<td> sold – ca
n be deleted! </spann></td>‘;
 }
… next part is omited
Adin can now see all itms marked as sold and can manually
delete them. For this operation is requested removeitem.php
script by clicking link generating link in row manage from
upper picture (on admin page). This way is provided call with
GET data.

Our removeitem.php script work also as it was mentioned before
for buyitem.php in two ways. GET data from calling ling and
next submit user decision for removing item from database. For
deletion user must change radiobutton from no to yes and
submit deletion commit.

Main part enable publishing, unpublishing and deletion of our
item. Next code snippet show main logic of this script.

… omitted part of removeitem.php …

 //create sql query along selected operation
 switch ($operation) {
 case „publish“:
 $sql = „UPDATE bazaar_item SET published =
 ‚1‘ WHERE item_id = $item_id LIMIT 1“;
 // execute SQL
 mysqli_query($dbc, $sql);
 // confirm executed command
 echo ‚<p> The item ‘ . $name_of_it

em . ‚ with id ‘ . $item_id . ‚ was
succesfully published. </p>‘;
 break;
 case „unpublish“:
 $sql = „UPDATE bazaar_item SET published =
 ‚0‘ WHERE item_id = $item_id LIMIT 1“;
 // execute SQL
 mysqli_query($dbc, $sql);
 // confirm executed command
 echo ‚<p> The item ‘ . $name_of_it
em . ‚ with id ‘ . $item_id . ‚ was
succesfully unpublished. </p>‘;
 break;
 case „delete“:
 $sql = „DELETE FROM bazaar_item WHERE item
_id = $item_id LIMIT 1“;
 // execute SQL
 mysqli_query($dbc, $sql);
 // confirm executed command
 echo ‚<p> The item ‘ . $name_of_it
em . ‚ with id ‘ . $item_id . ‚ was
succesfully deleted from listening on bazaar. </p>‘;
 @unlink(IMAGE_PATH . $screenshot1); //dele
te image file
 @unlink(IMAGE_PATH . $screenshot2);
 @unlink(IMAGE_PATH . $screenshot3);
 break;
 }
… omitted part …

Conclusion
We have now a better view on to how is lifecycle of item
managed from moment of publishing for sell up to time of
removing item from a database.

Now we can see further ways for improvement mostly in last
phases of item lifecycle. Our first approach rely on manual
handling by site admin, we can add much more automation into a
this process by adding code for batch deletion of all sold
items or only items sold before a specific time. Other

thoughts rely on way how to run script in regulary base
without need for intervention. Or how to archive all or only a
specific items.

Full application code can be obtained from github from there.

https://github.com/ciljak/bazaar

